An Optimum Buffer Management Strategy

for Sequential Decoding

1. W. Layland

Communications Systems Research

Sequential decoding has been found to be an efficient means of communicating
at low undetected error rates from deep space probes, but another failure mecha-
nism known as erasure or computational overflow remains a significant problem.
The erasure of a block occurs when the decoder has not finished decoding that

block at the time that it must be output.

The erasure rate can be unacceptably high even when the decoder is spending
over half of its time idly awaiting incoming data. By drawing upon analogies in
computer time-sharing, this article develops a buffer management strategy which
reduces the decoder idle time to a negligible level, and therefore improves the
erasure probability of a sequential decoder. For a decoder with speed advantage
of 10 and buffer size of 10 blocks, operating at an erasure rate of 10-2, use of the
new buffer management strategy reduces the erasure rate to less than 10-+.

l. Introduction

Convolutional encoding and sequential decoding have
been shown to be a useful technique for communicating
at low error rates from deep space probes. This coding
method has been flown successfully on Pioneer 9 and
will be used on Pioneers F and G, Helios, and possibly
many other spacecraft in the future. While low unde-
tected error rates are relatively easy to obtain with this
technique, another failure mode, known as computational
overflow or erasure, limits operation of the decoder to
data rates that are less than half of channel capacity.
Increasing the speed of the decoding computations pro-
vides some improvement, but only of a linear order.
Despite operation with the very high-speed multiple omis-
sion sequential decoder (Ref. 1), the frequency of erasures

106

was found to be in excess of two orders of magnitude over
undetected errors. Pure decoding speed is not an ade-
quate answer to the erasure problem. Heller (Ref. 2)
suggested that more complete knowledge of the erasure
mechanism and decoder buffer behavior might allow some
improvement in erasure performance.

The investigation described in this article was initiated
as a result of the observation that a sequential decoding
machine spends much of its time idling, waiting for in-
coming data, but at the same time is unable to decode
an intolerably large fraction of those data blocks. A
method was sought and found which reduces decoder
idle time to an insignificant level. This increased efficiency
of the decoder results in a slight-to-moderate improve-

JPL TECHNICAL REPORT 32-1526, VOL. VI

ment in erasure probability at high-to-moderate erasure
rates, and a very marked improvement at low erasure
rates.

Il. Computation Problem

The sequential decoding of convolutionally encoded
data proceeds by making local best estimates of the data
sequence, based upon both the received symbol sequence
and data estimates preceeding the current one in the
block. If the received symbols are relatively noiseless,
decoding proceeds-rapidly with no searching. If the re-
ceived symbols are noisy, some of the local estimates will
be wrong. To make the ultimate bit-error probability
low, the decoder must eventually recognize that an error
has been made and search systematically backward
through the local estimates to correct those in error. The
amount of searching that must be done depends upon
the amount of noise in the received data.

A considerable amount of experimental and theoretical
work has been expended in determining the statistical
behavior of the decoding search (Refs. 2 [pp. 36-45],
3, 4). It has been shown that the number of computations
¢ performed by a sequential decoder in incrementing by
one the number of bits for which a local estimate has
been made has a Pareto distribution, i.e.,

P, {c >N} ~kN-= 1)

The exponent « is a positive increasing function of the
bit signal-to-noise ratio ST5/N,. The expected value of ¢
becomes infinite for a=1. The signal-to-noise ratio at
which « = 1 is known as the computational cut-off point
for sequential decoding.

The constant k in Eq. (1) has been estimated by Heller
to be 1.9 (Ref. 2, p. 41). It has been further argued (Ref. 3)
that the distribution of computations on an L-bit block of
data is linear in L, so that

P, {cs > N} ~ kLN~ @)

is the probability that more than N computations are
required to decode a given block of received data. For
the remainder of this article, it will be assumed that
Eq. (2) defines the per-block distribution of computation.

IIl. Lower Bound to Erasure Probability

Suppose a sequential decoder has been implemented
which performs ;. computations during the time one bit

JPL TECHNICAL REPORT 32-1526, VOL. VI

is received, has an infinitely large buffer to hold data
waiting to be decoded, and a “magic genie” which informs
the decoder before it begins decoding which blocks it
should immediately erase in order to be able to decode
the largest possible fraction of all blocks received. It is
clear that in performing this task, the genie simply erases
all blocks whose number of required computations ex-
ceeds a threshold T,, and no blocks which require less
than T,. For if one block were erased which required
fewer computations than one which was decoded, we
could reverse the positions of these two blocks, decode
the easier of the two, and have some number of decoder
operations available to complete the decoding of one or
more other blocks. This contradicts the known condition
that the magic-augmented decoder is already decoding
the largest possible fraction of the received data, and
hence proves the correctness of our assessment of the
genie’s selection method.

Knowing the selection method and the distribution of
computation of the data, we are able to compute the
fraction of data erased by the genie. On the average, the
number of computations available to decode each block
is u-L, where p is the speed advantage. The number
actually expended is

0

f " NdP (N)

where P(N)= P, {c, > N). Since the decoder is doing
as well as possible, it must almost always be busy, hence,

/T" NdP (N) = u+L @)

0

Note that dP (N) = 0 for k- L-N-*> 1, or N < N,. Equa-
tion (3) can be easily and mechanically solved first for
T,, and then for P (T,), the fraction deleted.

P (TO) = e‘l»’-/k

P(T,) = kL [(kL)‘l/w—l — (%) (1 —~ %)]W_” azt1

(4)

a=1

P(T,) can be made zero by increasing u for all a > 1;
while « = 1, P(T,) is exponentially decreasing in p. P (To)
represents a lower bound to the erasure for sequential
decoding which depends only upon the speed of the de-
coder and the received ST;/N,. This bound can only be

107

approached if the amount of computation necessary to
decode a block is estimated with fair accuracy before
decoding is started.

IV. A Realistic Bound to Achievable Performance

Suppose instead of informing the decoder before de-
coding which blocks required excessive computation, the
genie encountered in Section III becomes whimsical and
halts computation only on noisy blocks after the decoder
has expended as much effort toward decoding them as in
decoding the noisiest block that does get decoded. Ob-
serving that the available computations are fully utilized
on the average, we have the equality

T.P(T,) + / " NdP(N) = 4L 5)

0

Equation (5) can be solved for T, and P(T,), yielding

P(T) =elwm1 4=

= . (1/a)-1 01;1 » a/(a-1) i
Py =k [= k] #1
(6)

P (T,) is conjectured to be a lower bound to erasure prob-
ability under the condition that no estimate of decoding
effort is made on the received data prior to decoding.

V. A Time-Sharing Model

The whimsical genie’s performance can be achieved,
or at least closely approximated, by some models from
computer time-sharing literature. Define each block re-
ceived as a job which must be processed by a computa-
tional facility—our sequential decoder. The amount of
work required by each job has the Pareto distribution of
Eq. (2). Jobs enter the decoder at a fixed rate and with
a fixed priority of 0. The priority of a job changes by an
amount —§ for each time unit that it spends being ser-
viced, while the priority remains unchanged while a job
is waiting in the buffer. At all times, the highest priority
job receives service. If more than one job has the same
priority, they share the processor equally. This has been
called the “last-come-first-served with pickup” model for
time-shared computations (Ref. 5). The priority in this
case is the negative of the decoding effort received. Blocks
which have received small amounts of decoding effort
have a higher priority than those which have received
larger amounts, and hence are given preference in receiv-

108

ing additional computation. On the average, all jobs re-
quiring less than some amount T, of computation will
be completed, while those needing T, or more will ac-
cumulate in the infinite buffer after having received T,
units of computation. This behavior is exactly that
achieved with the help of the whimsical genie of Sec-
tion IV, hence T, = T,. One possible disadvantage to
decoding in this fashion is that jobs are completed in an
order dependent upon the amount of computation re-
quired, instead of strictly in the order in which they
arrived.

VI. A Practical Memory Management Scheme

The steps necessary to approximate the model of Sec-
tion V with a practical and effective memory manage-
ment scheme for sequential decoding are: (1) to use a
finite buffer size, and (2) to quantize the amounts of com-
putation provided, so that the decoder does not spend all
of its time switching between blocks. Details of the
scheme are as follows: blocks which have received some
decoder effort are stored on a queue in priority order
inversely related to the amount of decoder effort which
they have received. After a new block is received, the
decoder immediately begins decoding upon that new
block. The block which the decoder had been working
upon is placed in the queue in proper priority order.
Whenever a block is completely decoded, its storage is
released to be used by some future data block. Whenever
a data block arrives for which no buffer space is avail-
able, the lowest priority block (not necessarily the oldest)
is erased and its space made available for the new block.
This algorithm is very similar to the feedback queuing
strategy for processor allocation in time sharing (Ref. 5),
and so will be called feedback queuing memory man-
agement (FBQM) in the following. Figure 1 is a flow
chart of the FBQM algorithm.

FBQM has been simulated using the assumption that
Eq. (2) is an accurate description of the per-block distri-
bution of required decoder effort. A sequence of uniform
(0,1) pseudo-random variables was generated by a
multiplicative-congruential generator and transformed
to produce the distribution of Eq. (2). The resultant ran-
dom variables, each representing a block of convolution-
ally encoded data, were supplied to a model of the FBQM
structure, and simultaneously to a model of the linear
buffer memory management traditionally used for se-
quential decoding. The results for one sequence of tests
are shown in Fig. 2. Little improvement is seen at low
values of u and high erasure probabilities, but where
performance of the linear buffer management is moder-

JPL TECHNICAL REPORT 32-1526, VOL. VI

ately good, performance of FBQM is up to three orders
of magnitude better. The one drawback is, as mentioned
earlier, that data blocks are not completed in strictly
time sequence but are completed in an order which de-
pends both upon the order of arrival at the decoder and
the amount of computation necessary to decode each.
While this may be annoying to some, it should not be a
significant drawback to deep-space science and video
data which receive a large amount of post-flight non-real-
time processing anyway, and to which could be added
the task of reordering the data into strict time sequence;
in the mission control center, perhaps.

VIl. Summary

This article has developed both a lower bound to
the erasure probability of a sequential decoder with
an infinite buffer, and a memory management strategy
(FBQM) for decoders with finite buffer which performs
close to the bound. Both the erasure probability of FBOM
and its lower bound exhibit exponential decrease with

increasing decoder speed at the sequential decoding com-
putational cut-off point, where the erasure probability of
a conventional sequential decoder exhibits only inverse
proportionality. For a decoder with speed advantage
u = 40, the improvement is about 0.2 dB in required
STy/N, at a fixed erasure rate of 10~ or three orders of
magnitude decrease in erasure probability at « = 1. For
a decoder with speed advantage of 10 and buffer size of
10 blocks, operating at an erasure rate of 10-2, use of the
new buffer management strategy reduces the erasure rate
to less than 10+

All of the results presented here depend strongly upon
the validity of Eq. (2) as a definition of the per-block
distribution of computation for a sequential decoder.
Since some of the arguments which support Eq. (2) are
asymptotic in nature, and the decoder performance with
FBQM depends upon the distribution of computation at
both large and small values of the computation variable,
additional simulations with actual sequential decoding
data will be needed to validate the results obtained.

References

1. Layland, J. W., “Information Systems: Multiple Mission Sequential Decoder—
Comparing Performance Among Three Rate 1/2, K = 32 Codes,” in The Deep
Space Network, Space Programs Summary 37-64, Vol. II, pp. 50-52. Jet Pro-
pulsion Laboratory, Pasadena, Calif., Aug. 31, 1970.

2. Heller, J. A., “Decoding and Synchronization Research: Description and Oper-
ation of a Sequential Decoder Simulation Program,” in Supporting Research
and Advanced Development, Space Programs Summary 37-58, Vol. I1I, p. 42.
Jet Propulsion Laboratory, Pasadena, Calif., Aug. 31, 1969.

3. Savage, J. E., “The Distribution of Sequential Decoding Computation Time,”
IEEE Trans. Inform. Theory, Vol. IT-11, pp. 143-147, April 1966.

4, Jacobs, I. M., and Berlekamp, E. R., “A Lower Bound to the Distribution of
Computation for Sequential Decoding,” IEEE Trans. Inform. Theory, Vol.
IT-13, pp. 167-174, April 1967. (See also Jacobs, I. M., and Berlekamp, E., “A
Lower Bound to the Distribution of Computation for Sequential Decoding,”
in Supporting Research and Advanced Development, Space Programs Sum-
mary 37-34, Vol. IV, pp. 270-276. Jet Propulsion Laboratory, Pasadena, Calif,,

Aug. 31, 1965.)

5. Kleinrock, L., “A Continuum of Time-Sharing Scheduling Algorithms,” in
AFIPS Conference Proceedings, Vol. 36, 1970, pp. 453-458, Spring Joint Com-
puter Conference, Atlantic City, N. J., 1970.

JPL TECHNICAL REPORT 32-1526, VOL. VI

109

1

DO DECODING STEP
ON CURRENT BLOCK

\ YES
BLOCK DONE? A

RELEASE DATA IN
CURRENT BLOCK

RETURN EMPTY CURRENT
BLOCK AS LOW PRIORITY
QUEUED BLOCK

SAVE DECODER STATUS
IN CURRENT BLOCK

QUEUE CURRENT BLOCK
BY PRIORITY

YES
NEW BLOCK IN?

NO LOWEST PRIORITY

BLOCK EMPTY?

'

ERASE LOWEST
PRIORITY BLOCK

HIGHEST PRIORITY
BLOCK EMPTY?

L

| |

FETCH LOWEST PRIORITY

BLOCK FOR IeAUT 07 FETCH HIGHEST PRORITY
NEXT NEWBLOCK

RESTART DECODER ON

CURRENT BLOCK
NEW BLOCK IS
CURRENT BLOCK

:

INITIALIZE DECODER
FOR CURRENT BLOCK

L

Fig. 1. Flow chart for FBQM

JPL TECHNICAL REPORT 32-1526, VOL. VI

Eb/No FORr =3

2.1 2.2 2.3

BLOCK SIZE = 250
BUFFER = 10 BLOCKS
5

AN

\ 5 X107 SAMPLES
N

ERASURE PROBABILITY
=

B =40 /\
\(»,‘20 LINEAR\

/ 2
Lt} i L1 1 | L1 11w

LINEAR

FBQM
FBQM FBam

A/

Fig. 2. Comparison of FBQM and linear

JPL TECHNICAL REPORT 32-1526, VOL. VI

.9 1.0 11
PARETO EXPONENT

buffer management

111

